

Bluesole System Bluesole I i40e-A Datasheet

Version 1.0

BlueSoleil EcoSystem

BlueSoleil EcoSystem

VERSION HISTORY

Contents

1	Block Dia	gram and Descriptions	6		
2	Flectrical	Characteristics CNSVV	8		
-	2.1 A	osolute Maximum Ratings	8		
	2.2 R	ecommended Operating Conditions	8		
		erminal Characteristics			
		irrent Consumption			
		adio Characteristics			
	2.5				
	2.5.2				
3		ption			
4	Physical I	nterfaces			
-		ART Interface			
	4.1.1				
		I Interface			
		CM Interface			
	4.3.1				
	4.3.2				
	4.3.3				
	4.3.4				
	4.3.5				
	4.3.6				
	4.3.7				
	4.3.8	PCM Configuration			
5	Software	PCM Configuration			
-		ueSoleil Stack			
6		Data Rate			
		hanced Data Rate Baseband			
	6.2 Er	hanced Data Rate _/4 DQPSK			
		DQPSK			
7		emperature-time profile			
8	Reliability and Environmental Specification				
		rature test			
	8.2 Vibration Test				
	8.3 Desqu	amation test			
	8.4 Drop t				
	•	ging information			
9		d Soldering Considerations			
	-	Jldering Recommendations			

	9.2	Layout Guidelines	
10	Physica	al Dimensions	29
11	Packag	e	
12	Certific	cation	30
	12.1	Bluetooth	
	12.2	Korea KCC	
	12.3	Japan TELEC	
	12.4	Bluetooth Technology Best Developed Corporation	33
13	Contac	ts	33
14	Copyri	ght	33

BlueSoleil EcoSystem

BlueSoleil EcoSystem

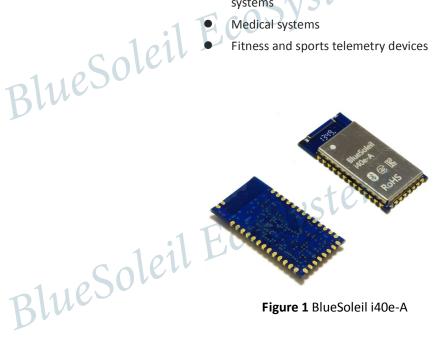
BlueSoleil EcoSystem

BlueS leil i40e-A

DESCRIPTION

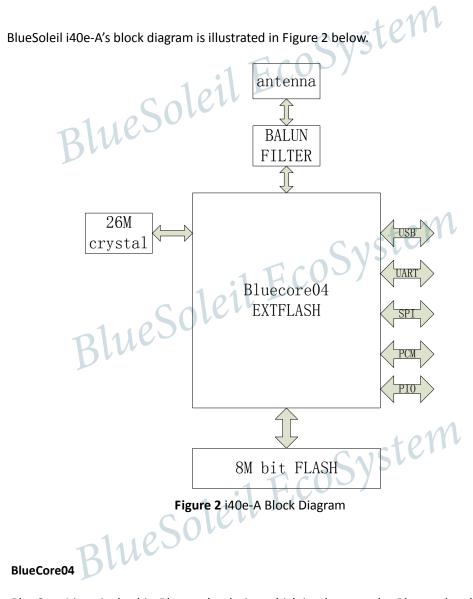
BlueSoleil i40e-A is a Bluetooth 2.1 +EDR (Enhanced Data Rates) Class 2 module. i40e-A contains all the necessary elements from Bluetooth radio to antenna, and a fully implemented protocol stack.

By default, i40e-A module is equipped with powerful and easy-to-use BlueSoleil firmware. BlueSoleil firmware enables users to access Bluetooth functionality with simple ASCII commands delivered to the module over serial interface - it's just like a *Bluetooth* modem.


Therefore, i40e-A provides an ideal solution for developers who rapidly want to integrate Bluetooth wireless technology into their design.

FEATURES

- Fully Qualified Bluetooth system v2.1 + EDR,
- BQB, KCC, TELEC
- Support both Master and Slave roles
- Integrated chip antenna
- Industrial temperature range from -40^oC to +85[°]C
- **RoHS Compliant**
- Support for 802.11 Coexistence
- 8Mbits of Flash Memory
- Low power consumption


APPLICATIONS

- Cable replacement
- Point-of-sales systems
- Barcode readers and pay terminals
- Telemetry and machine-to-machine devices
- Automotive inspection and measurement systems
- Medical systems
 - Fitness and sports telemetry devices

1 Block Diagram and Descriptions

BlueCore4 is a single chip *Bluetooth* solution which implements the *Bluetooth* radio transceiver and also an on chip microcontroller. BlueCore4 implements *Bluetooth*^{*} 2.1 + EDR (Enhanced Data Rate) and it can deliver data rates up to 3 Mbps.

The microcontroller (MCU) on BlueCoreO4 acts as interrupt controller and event timer run the *BlueSoleil* stack and control the radio and host interfaces. A 16-bit reduced instruction set computer (RISC) microcontroller is used for low power consumption and efficient use of memory.

BlueCoreO4 has 48Kbytes of on-chip RAM is provided to support the RISC MCU and is shared between the ring buffers used to hold voice/data for each active connection and the general purpose memory required by the *BlueSoleil* stack.

Crystal

The crystal oscillates at 26MHz.

Flash

Flash memory is used for storing the Bluetooth protocol stack and Virtual Machine applications. It can also be used as an optional external RAM for memory intensive applications.

Balun / filter

Combined balun and filter changes the balanced input/output signal of the module to unbalanced signal of the monopole antenna. The filter is a band pass filter (ISM band).

Matching

Antenna matching components match the antenna to 50 Ohms.

USB

This is a full speed Universal Serial Bus (USB) interface for communicating with other compatible digital devices. i40e-A acts as a USB peripheral, responding to requests from a Master host controller such as a PC.

Synchronous Serial Interface

This is a synchronous serial port interface (SPI) for interfacing with other digital devices. The SPI port can be used for system debugging. It can also be used for programming the Flash memory.

UART

This is a standard Universal Asynchronous Receiver Transmitter (UART) interface for communicating with other serial devices.

Audio PCM Interface

The audio pulse code modulation (PCM) Interface supports continuous transmission and reception of PCM encoded audio data over Bluetooth.

Programmable I/O

i40e-A has a total of 9 digital programmable I/O terminals. These are controlled by firmware Svste running on the device.

RESET

This can be used to reset i40e-A. i40e-A is equipped with circuitry for generating Power ON Reset from the internal core voltage. A reset is generated when the core voltage falls below typically 1.5V and is released when it rises above typically 1.6V.Via Pin RESETB an external reset is generated by holding RESETB at $\leq 0.3V$ for ≥ 5 ms.

802.11 Coexistence Interface

Dedicated hardware is provided to implement a variety of coexistence schemes. Channel skipping AFH (Adaptive Frequency Hopping), priority signaling, channel signaling and host passing of channel instructions are all supported. All mentioned features are configured in firmware.

2 Electrical Characteristics System

2.1Absolute Maximum Ratings

The module should not continuously run under extreme conditions. The absolute maximum ratings are summarized in Table 1 below. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

1 0 (

stem

- 10	Min	Max	Unit		
Storage temperature	-40	85	°C		
Operating temperature	-40	85	°C		
Supply voltage	-0.3	3.6	V		
Terminal voltages	Vss-0.4	Vdd+0.4	V		

Table 1 Absolute Maximum Ratings

2.2 Recommended Operating Conditions

Recommended operating conditions are summarized in Table 2 below. BlueSoleil i40e-A operates as low as 2.7 V supply voltage. However, to safely meet the USB specification for minimum voltage for USB data lines, minimum of 3.1 V supply is required.

	Min	Тур	Max	Unit
Operating temperature	-40	20	85	°C
Supply voltage	3.1	3.3	3.6	V
Terminal voltages	0	-	Vdd	V

Table 2 Recommended Operating Conditions

2.3Terminal Characteristics

BlueSoleil i40e-A's terminal characteristics are summarized in Table 3 below.

 Table 3 Terminal Characteristics

|--|

I/O voltage levels						
VIL input logic level low	-0.4	_	0.8	V		
VIH input logic level high	0.7Vdd	-	Vdd + 0.4	V		
VOL output logic level low	-	-	0,2	V		
VOH output logic level high	Vdd -0.2		sterr	V		
Reset terminal	4	1.000	y			
VTH, res threshold voltage	0.64	0.85	1.5	V		
RIRES input resistance	ner	220	_	kΩ		
CIRES input capacitance		220	-	nF		
Input and tri-state current with						
Strong pull-up	-100	-40	-10	μA		
Strong pull-down	10	40	100	μA		
Weak pull-up	-5	-1	-0.2	μΑ		
Weak pull-down	0.2	1	55	μA		
I/O pad leakage current	-1	100	1	μΑ		
Vdd supply current						
TX mode	COLU	_	70	mA		
RX mode		-	70	mA		

2.4Current Consumption

BlueSoleil i40e-A's current consumption is summarized in Table 4 below

	1			
Operation Mode	Connection Type	UART Rate (kbps)	Average	Unit
Inquiry and Page scan	- 25010		2.1	mA
ACL No traffic 500ms	Slave	9.6	1.9	mA
Sniff	Master	9.6	1.9	mA
ACL with file transfer	Slave	9.6	22.7	mA
ACL with the transfer	Master	9.6	11.5	mA
Stand by Host	-		1.0 + 0.1	mA
connection(a)	-	C	1.5	IIIA

 Table 4 Current Consumption

2.5Radio Characteristics leil ECOST

2.5.1 Transmitter Radio Characteristics

i40e-A meets the Bluetooth v2.1 + EDR specification between -40°C and +85°C. TX output is

guaranteed to be unconditionally stable over the guaranteed temperature range. Refer to Table 5 below. Measurement conditions: T = 20 $^\circ\!\mathrm{C}$, Vdd = 3,3V

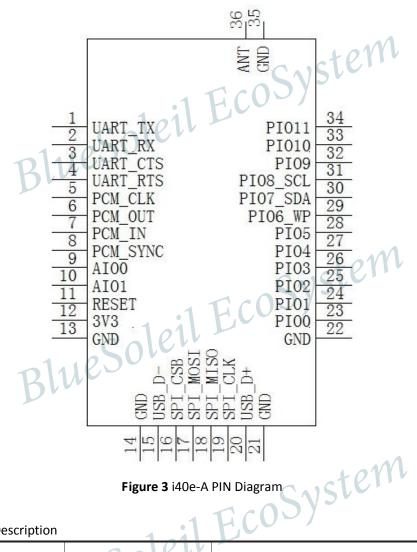
Item	Typical Value	Bluetooth Specification	Unit
Maximum output power ^{1,2}	+2.5	-6 to 4 ³	dBm
RF power control range	35	≧16	dB
20dB bandwidth for modulated carrier	780	≦1000	kHz
Adjacent channel transmit power F = F0 ± 2MHz	-40	≦ 20	dBm
Adjacent channel transmit power F = F0 ± 3MHz	-45	-40	dBm
Adjacent channel transmit power F = F0 ± > 3MHz	-50	vst-40M	dBm
Δf1avg Maximum Modulation	-165	140 <f1avg<175< td=""><td>kHz</td></f1avg<175<>	kHz
Δf2max Maximum Modulation	150	115	kHz
Δf1avg / Δf2avg	0.97	≧0.80	-
Initial carrier frequency tolerance	6	≦75	kHz
Drift Rate	8	≦20	kHz/50µs
Drift (single slot packet)	7	≦ 25	kHz
Drift (five slot packet)	9	≦ 40	kHz
2 nd Harmonic content	-65	≦ -30	dBm
3 rd Harmonic content	-45	ເ≦30	dBm
NOTES:	1 F.CO.) y ~	

Table 5 Transmitter Radio Characteristics at Basic Data Rate and Temperature 20 $^\circ \! \mathbb{C}$

- 1. I40E-A firmware maintains the transmit power to be within the *Bluetooth* v2.1 + EDR specification limits.
- 2. Measurement made using a PSKEY_LC_MAX_TX_POWER setting corresponds to a PSKEY_LC_POWER_TABLE power table entry of 63.

2.5.2 Receiver Radio Characteristics

System


RX input is guaranteed to be unconditionally stable over the guaranteed temperature range. Refer to Table 6 below. Measurement conditions: $T = 20^{\circ}C$, Vdd = 3,3V. \mathbf{C}

F	Frequency(GHz)	Тур.	Unit	<i>Bluetooth</i> Specification	Remark
Sensitivity@0.1%	2.402	-85	dBm		
BER for all packet	2.441	-84	dBm	<-75dBm	

types	2.480	-84	dBm			
BER@ Maximum	2.402	0	dBm			
received	2.441	0	dBm	<0.1%		
signal(-20dBm)	2.480	0	dBm			
3 PIN Description ell EcoSystem						

BlueSoleil i40e-A's PIN description refers to Figure 3 and Table 7.

Table 7 PI	N Description
------------	---------------

PIN NO.	NAME	10 STYPE	FUNCTION
1	UART_TX	CMOS Output	UART Data Output
2	UART_RX	CMOS Input	UART Data Input
3	UART_CTS	CMOS Input	UART Clear To Send Active Low
4	UART_RTS	CMOS Output	UART Request To Send Active Low

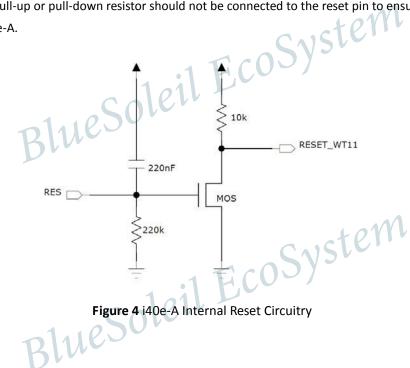
i40e-A Datasheet

5			
	PCM_CLK	Bi-directional	Synchronous Data Clock
6	PCM_OUT	CMOS Output	Synchronous Data Output
7	PCM_IN	CMOS Input	Synchronous Data Input
8	PCM_SYNC	Bi-directional	Synchronous Data Sync
9	AIOO	Bi-directional	Programmable Input/Output Line
10	AIO1	Bi-directional	Programmable Input/Output Line
11	RESET	CMOS Input	Reset if low. Input debounced so must be low
11	NL3L1	civios input	for >5ms to cause a reset
12	3V3	POWER	+3.3V Supply
13	GND	GND	Ground
14	GND	GND	Ground
15	USB_D-	Bi-directional	USB Data Minus
16	SPI_CSB	CMOS Input	Chip Select For Synchronous Serial Interface
17	SPI_MOSI	CMOS Input	Serial Peripheral Interface Data Input
18	SPI_MISO	CMOS Output	Serial Peripheral Interface Data Output
19	SPI_CLK	CMOS Input	Serial Peripheral Interface Clock
20	USB_D+	Bi-directional	USB Data Plus with selectable internal 1.5K Ω
21	GND	GND	Ground
22	GND	GND	Ground
23	PIOO	Bi-directional with programmable strength	Control output for external LNA(if fitted)
24	PIO1	Bi-directional with programmable strength	Control output for external PA(if fitted)
25	PIO2	Bi-directional	Programmable Input/Output Line
26	PIO3	Bi-directional	Programmable Input/Output Line
27	PIO4	Bi-directional with programmable strength	Programmable Input/Output Line or optional BT_Priority/CH_Clk output for co-existence
28	PIO5	Bi-directional with programmable strength	Programmable Input/Output Line or optional BT_Active output for co-existence
29	PIO6_WP	Bi-directional	Programmable Input/Output Line
	PIO7_SDA	Bi-directional	Programmable Input/Output Line
30	PIO8_SCL	Bi-directional	Programmable Input/Output Line
30 31			
	PIO9	Bi-directional	Programmable Input/Output Line
31		Bi-directional Bi-directional	Programmable Input/Output Line Programmable Input/Output Line
31 32	PIO9		

Antenna

GND

EcoSystem Connect GND pins to the ground plane of PCB.


VDD

3.3 V supply voltage connection. i40e-A has an internal decoupling capacitor and LC filter to block high frequency disturbances. Thus external filtering is usually not needed. It is however recommended to leave an option for an external high Q 10pF decoupling capacitor in case EMC problems arise.

RESET

The RESET pin is an active high reset and is internally filtered using the internal low frequency clock oscillator. A reset will be performed between 1.5 and 4.0ms following RESET being active. It is recommended that RESET be applied for a period greater than 5ms.

BlueSoleil i40e-A has an internal reset circuitry, which keeps reset pin active until supply voltage has reached stability in the start up. See Figure 4below. This ensures that supply for the flash memory inside the i40e-A will reach stability before BC4 chip fetches instructions from it. Schematic of the reset circuitry is shown in figure 4. Rising supply voltage charges the capacitor, which will activate the reset of i40e-A. The capacitor discharges through 220k resistor, which eventually deactivates the reset. Time constant of the RC circuitry is set such that the supply voltage is safely stabilized before reset deactivates. Pull-up or pull-down resistor should not be connected to the reset pin to ensure proper star up of i40e-A.

PIO0 - PIO5, PIO9 - PIO11

Programmable digital I/O lines.

RTS

CMOS output with weak internal pull-up. Can be used to implement RS232 hardware flow control where RTS (request to send) is active low indicator. UART interface requires external RS232 syster transceiver chip.

CTS

CMOS input with weak internal pull-down. Can be used to implement RS232 hardware flow control where CTS (clear to send) is active low indicator. UART interface requires external RS232 transceiver chip.

RX

CMOS input with weak internal pull-down. RXD is used to implement UART data transfer from another device to i40e-A. stem

ТΧ

CMOS output with weak internal pull-up. TXD is used to implement UART data transfer from iole1 i40e-A to another device.

PCM_OUT

CMOS output with weak internal pull-down. Used in PCM (pulse code modulation) interface to transmit digitized audio.

PCM_IN

CMOS input with weak internal pull-down. Used in PCM interface to receive digitized audio.

PCM_CLK

Bi-directional synchronous data clock signal pin with weak internal pull-down. PCM_ CLK is used in PCM interface to transmit or receive CLK signal. When configured as a master, i40e-A generates clock signal for the PCM interface. When configured as a slave PCM_CLK is an input and receives the clock signal from another device.

PCM SYNC

Bi-directional synchronous data strobe with weak internal pull-down. When configured as a master, i40e-A generates SYNC signal for the PCM interface. When configured as a slave PCM_SYNC is an input and receives the SYNC signal from another device.

USB_D+

Bi-directional USB data line with a selectable internal 1.5k pull-up implemented as a current source (compliant with USB specification v1.2) External series resistor is required to match the connection to the characteristic impedance of the USB cable.

USB_D-

Bi-directional USB data line. External series resistor is required to match the connection to the characteristic impedance of the USB cable.

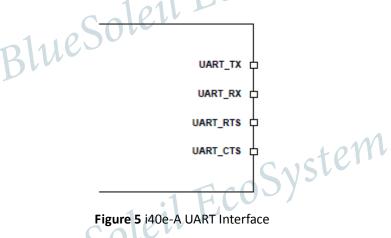
SPI_CSB

CMOS input with weak internal pull-up. Active low chip select for SPI (serial peripheral interface).

SPI CLK

CMOS input for the SPI clock signal with weak internal pull-down. i40e-A is the slave and receives the clock signal from the device operating as a master.

SPI_MISO


SPI data output with weak internal pull-down.

SPI_MOSI

4 Physical Interfaces 1 EcoSystem

4.1UART Interface

BlueSoleil i40e-A Universal Asynchronous Receiver Transmitter (UART) interface provides a simple mechanism for communicating with other serial devices using the RS232 standard. i40e-A's UART interface uses voltage levels of 0 to Vdd and thus external transceiver IC is required to meet the voltage level specifications of UART.

Four signals are used to implement the UART function, as shown in Figure 5 above. When i40e-A is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART CTS and UART RTS, can be used to implement RS232 hardware flow control where both are active low indicators. All UART connections are implemented using CMOS technology and have signaling levels of 0V and VDD.

In order to communicate with the UART at its maximum data rate using a standard PC, an accelerated serial port adapter card is required for the PC. The possible UART settings are summarized in Table 8 below.

Table 8 Possible U	ART Settings	Lam		
UA	ART Parameters	Possible Values		
	Minimum .1 F	1200 baud (≤2%Error)		
Baud rate		9600 baud (≤1%Error)		
	Maximum	3.0Mbaud (≤1%Error)		
Flow control 📊	111650	RTS/CTS, none		
Parity		None, Odd, Even		
Number of stop bi	its	1 or 2		
Bits per channel		8		
		System		

The UART interface is capable of resetting i40e-A upon reception of a break signal. A Break is identified by a continuous logic low (0V) on the UART_RX terminal, as shown in Figure 5. If t_{BRK} is longer than the value, defined by the PS Key PSKEY_HOST_IO_UART_RESET_TIMEOUT(0x1a4), a reset will occur. This feature allows a host to initialize the system to a known state. Also, i40e-A can emit a Break character that may be used to wake the Host. See Figure 6 below.

Since UART RX terminal includes weak internal pull-down, it can't be left open unless disabling UART interface using PS KEY settings. If UART is not disabled, a pull-up resistor has to be connected to UART_RX. UART interface requires external RS232 transceiver, which usually includes the required pull-up.

4.1.1 UART Configuration While RESET is Active

The UART interface for i40e-A while the chip is being held in reset is tri-state. This will allow the user to daisy chain devices onto the physical UART bus. The constraint on this method is that any devices connected to this bus must tri-state when i40e-A reset is de-asserted and the firmware begins 4.2SPI Interface LeSoleil

The synchronous serial port interface (SPI) is for interfacing with other digital devices. The SPI port can be used for system debugging. It can also be used for programming the Flash memory. SPI

interface is connected using the MOSI, MISO, CSB and CLK pins.

The module operates as a slave and thus MISO is an output of the module. MISO is not in high impedance state when CSB is pulled high. Instead, the module outputs 0 if the processor is running eil EcoSystem and 1 if it is stopped.

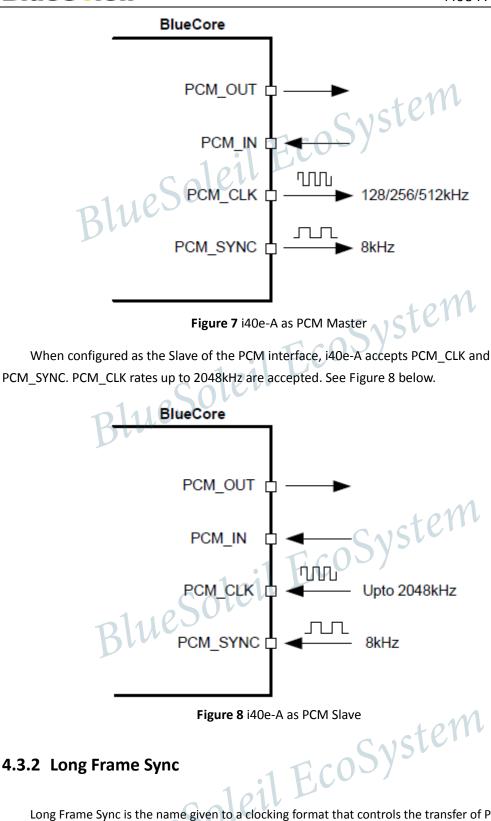
4.3PCM Interface

PCM is a standard method used to digitize audio (particularly voice) for transmission over digital communication channels. Through its PCM interface, i40e-A has hardware support for continual transmission and reception of PCM data, thus reducing processor overhead for wireless headset applications. i40e-A offers a bidirectional digital audio interface that routes directly into the baseband layer of the on-chip firmware. It does not pass through the HCI protocol layer.

Hardware on i40e-A allows the data to be sent to and received from a SCO connection. Up to three SCO connections can be supported by the PCM interface at any one time.

i40e-A can operate as the PCM interface master generating an output clock of 128, 256 or 512kHz.When configured as PCM interface slave, it can operate with an input clock up to 2048KHz. i40e-A is compatible with a variety of clock formats, including Long Frame Sync, Short Frame Sync and GCI timing environments.

It supports 13-bit or 16-bit linear, 8-bit µ-law or A-law companded sample formats at 8ksamples/s and can receive and transmit on any selection of three of the first four slots following PCM_SYNC. The PCM configuration options are enabled by setting PSKEY_PCM_CONFIG32(0x1b3).


4.3.1 PCM Interface Master/Slave

When configured as the Master of the PCM interface, i40e-A generates PCM_CLK and PCM_SYNC. See Figure 7 below.

Ecos

BlueSoleil EcoSystem

4.3.2 Long Frame Sync

Long Frame Sync is the name given to a clocking format that controls the transfer of PCM data words or samples. In Long Frame Sync, the rising edge of PCM_SYNC indicates the start of the PCM word. When i40e-A is configured as PCM Master, generating PCM_SYNC and PCM_CLK, then PCM_SYNC is 8-bits long. When BlueCore4-External is configured as PCM Slave, PCM_SYNC may be from two consecutive falling edges of PCM_CLK to half the PCM_SYNC rate, i.e. 62.5µs long. See Figure 9 below.

i40e-A samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge.

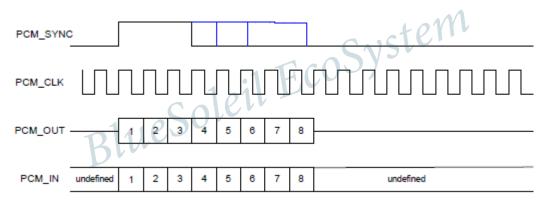


Figure 9 Long frame Sync (shown with 8-bit companded sample) EcoSyste

4.3.3 Short Frame Sync

In Short Frame Sync the falling edge of PCM_SYNC indicates the start of the PCM word. PCM_SYNC is always one clock cycle long. See Figure 10 below.

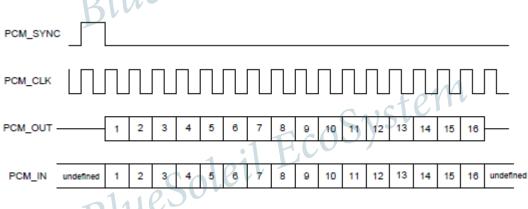


Figure 10 Short Frame Sync (shown with 16-bit companded sample)

As with Long Frame Sync, I40e-A samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge 211 EcoSystem of PCM_CLK in the LSB position or on the rising edge.

4.3.4 Multi Slot Operation

More than one SCO connection over the PCM interface is supported using multiple slots. Up to three SCO connections can be carried over any of the first four slots. See Figure 11 below.

SHORT_PCM_SYN	
OR	
LONG_PCM_SYNC	
PCM_CLK	
PCM_OUT	
	COLEV
PCM_IN	undefined 1 2 3 4 5 6 7 8 undefined

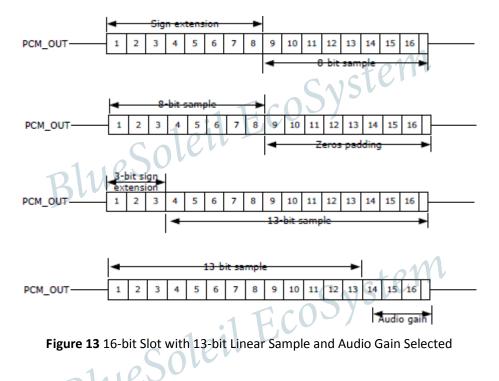
Figure 11 Multi Slot Operation (shown with two slots and 8-bit companded samples)

4.3.5 GCI Interface

i40e-A is compatible with the General Circuit Interface, a standard synchronous 2B+D ISDN timing interface. The two 64Kbps B channels can be accessed when this mode is configured. See Figure -101112 below.

PCM_SYNC	B		<u>)</u> (25	50) ['													
PCM_CLK										IJ									
PCM_OUT		1	2	3	4	5	6	7	8	[1	2	3	4	5	6	7	8	<u>}</u>
PCM_IN	undefined	1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8	undefined
		1		0	50	Figu	e are 1	L 2 G	CLI	nt	erfa	ace							

The start of frame is indicated by the rising edge of PCM_SYNC and runs at 8K Hz. With i40e-A in Slave mode, the frequency of PCM_CLK can be up to 4.096MHz.


4.3.6 Slots and Sample Formats

:tem i40e-A can receive and transmit on any selection of the first four slots following each sync pulse. Slot durations can be either 8 or 16 clock cycles. Duration's of 8 clock cycles may only be used with 8-bit sample formats. Durations of 16 clocks may be used with 8, 13 or 16-bit sample formats. RI11

i40e-A supports 13-bit linear, 16-bit linear and 8-bit μ-law or A-law sample formats. The sample rate is 8ksamples/s. The bit order may be little or big endian. When 16-bit slots are used, the 3 or 8 unused bits in each slot may be filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with some Motorola CODECs. See Figure 13

below.

4.3.7 Additional Features

i40e-A has a mute facility that forces PCM_OUT to be 0. In Master mode, PCM_SYNC may also be forced to 0 while keeping PCM_CLK running which some CODECS use to control power down. EcoSystem

4.3.8 PCM Configuration

The PCM configuration is set using two PS Keys, PSKEY_PCM_CONFIG32 and PSKEY_PCM_LOW_JITTER_CONFIG. They are summarized in Table 9 and Table 10below. The default for PSKEY_PCM_CONFIG32 key is 0x00800000 i.e. first slot following sync is active, 13-bit linear voice format, long frame sync and interface master generating 256kHz PCM_CLK from 4MHz internal clock with no tri-stating of PCM_OUT.

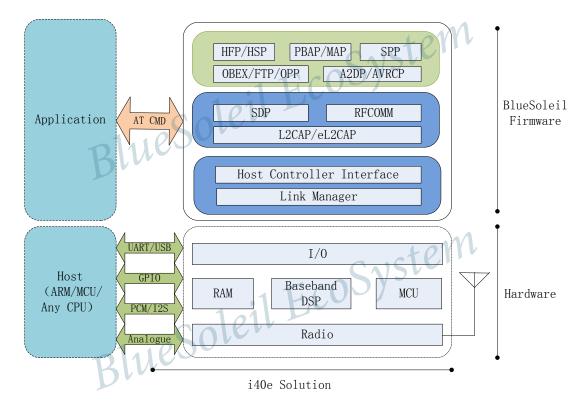
Table 9 PSKEY_PCM_C	ONFIG32 Desc	cription
Name	Bit position	Description
-	0	Set to 0
		0 selects Master mode with internal generation of
SLAVE MODE EN		PCM_CLK and PCM_SYNC. 1 selects Slave mode requiring
SLAVE MODE EN	1123	externally generated PCM_CLK and PCM_SYNC. This should
В		be set to 1 if 48M_PCM_CLK_GEN_EN (bit 11) is set.
		0 selects long frame sync (rising edge indicates start of
SHORT SYNC EN	2	frame), 1 selects short frame sync (falling edge indicates
		start of frame).

-	3	Set to 0
		0 selects padding of 8 or 13-bit voice sample into a 16- bit
		slot by inserting extra LSBs, 1 selects sign extension. When
SIGN EXTENDED EN	4	padding is selected with 3-bit voice sample, the 3 padding
		bits are the audio gain setting; with 8-bit samples the 8
		padding bits are zeroes.
LSB FIRST EN	5 -	0 transmits and receives voice samples MSB first, 1 uses
LSD FIRST EIN	5	LSB first.
-1.	1050	0 drives PCM_OUT continuously, 1 tri-states PCM_OUT
TX TRISTATE EN	6	immediately after the falling edge of PCM_CLK in the last
		bit of an active slot, assuming the next slot is not active.
		0 tristates PCM_OUT immediately after the falling edge of
TX TRISTATE RISING	7	PCM_CLK in the last bit of an active slot, assuming the next
EDGE EN	,	slot is also not active. 1 tristates PCM_OUT after the rising
		edge of PCM_CLK.
		0 enables PCM_SYNC output when master, 1 suppresses
SYNC SUPPRESS EN	8	PCM_SYNC whilst keeping PCM_CLK running. Some
	S	CODECS utilize this to enter a low power state.
GCI MODE EN	9.9	1 enables GCI mode.
MUTE EN	10	1 forces PCM_OUT to 0.
		0 sets PCM_CLK and PCM_SYNC generation via DDS from
48M PCM CLK GEN	11	internal 4 MHz clock, as for BlueCore4-External. 1 sets
EN	11	PCM_CLK and PCM_SYNC generation via DDS from internal
		48 MHz clock.
LONG LENGTH SYNC		0 sets PCM_SYNC length to 8 PCM_CLK cycles and 1 sets
EN	12	length to 16 PCM_CLK cycles. Only applies for long frame
	0	sync and with 48M_PCM_CLK_GEN_EN set to 1.
-	[20:16]	Set to 0b00000.
R	UC ^e	Selects 128 (0b01), 256 (0b00), 512 (0b10) kHz PCM_CLK
MASTER CLK RATE	[22:21]	frequency when master and 48M_PCM_CLK_GEN_EN (bit
		11) is low.
ACTIVE SLOT	[26:23]	Default is 0001. Ignored by firmware
		Selects between 13 (0b00), 16 (0b01), 8 (0b10) bit sample
SAMPLE_FORMAT	[28:27]	with 16 cycle slot duration 8 (0b11) bit sample 8 cycle slot
		duration.

Table 10 PSKEY_PCM_LOW_JITTER_CONFIG Description

Name	Bit position	Description
CNT LIMIT	[12:0]	Sets PCM_CLK counter limit
CNT RATE	[23:16]	Sets PCM_CLK count rate.
SYNC LIMIT	[31:24]	Sets PCM_SYNC division relative to PCM_CLK.

A



5 Software Stacks

BlueSoleil i40e-A is supplied with *Bluetooth* v2.1 + EDR compliant stack firmware, which runs on the internal RISC microcontroller. i40e-A's software architecture allows *Bluetooth* processing and the application program to be shared in different ways between the internal RISC microcontroller and an external host processor (if any).

5.1BlueSoleil Stack

The BlueSoleil stack is illustrated in Figure 14 below.

Figure 14 BlueSoleil Stack

In this version of the stack firmware shown no host processor is required to run the *Bluetooth* protocol stack. All BlueSoleil stack layers, including application software, run on the internal RISC processor.

The host processor interfaces to BlueSoleil stack via one or more of the physical interfaces. The most common interfacing is done via UART interface using the ASCII commands supported by the BlueSoleil stack. With these ASCII commands the user can access *Bluetooth* functionality without paying any attention to the complexity, which lies in the *Bluetooth* protocol stack.

The user may write applications code to run on the host processor to control BlueSoleil stack

with ASCII commands and to develop *Bluetooth* applications. Please refer to BlueSoleil i40e-A's programming manuals: BlueSoleil_i40e_SPP_programming_manual.pdf or BlueSoleil_Firmware _programming_manual.pdf.

oSystem

coSystem

6 Enhanced Data Rate

EDR has been introduced to provide 2x and optionally 3x data rates with minimal disruption to higher layers of the *Bluetooth* stack. CSR supports both of the new data rates, with i40e-A. i40e-A is compliant with revision v2.0.E.2 of the specification.

6.1Enhanced Data Rate Baseband

At the baseband level EDR uses the same 1.6kHz slot rate as basic data rate and therefore the packets can be 1, 3, or 5 slots long as per the basic data rate. Where EDR differs from the basic data rate is that in the same 1MHz symbol rate 2 or 3bits are used per symbol, compared to 1bit per symbol used by the basic data rate. To achieve the increase in number of bits symbol, two new modulation schemes have been introduced as summarized in Table 11 below, and the modulation schemes are explained in the further sections.

Table 11 Data Rate Schemes

Scheme	Bits per symbol	Modulation
Basic data rate	1	GESK
Enhanced data rate	2	P/4 DQPSK
Enhanced data rate	3	8DPSK (optional)

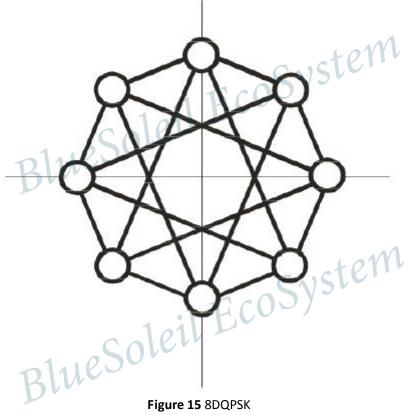
Although the EDR uses new packets Link establishment and management are unchanged and still use Basic Rate packets.

6.2Enhanced Data Rate _/4 DQPSK

4 DQPSK includes the following features:

- 4-state Differential Phase Shift Keying.
- 4-state Differential Phase Shift Keying.
- 2 bits determine phase shift between consecutive symbols. Refer to Table 12 below.
- S/4 rotation avoids phase shift of S, which would cause large amplitude variation.
- Raised Cosine pulse shaping filter to further reduce side band emissions.

Table 12 2 bits Determine Phase Shift between Consecutive Symbols


Bit pattern	Phase shift
00	Π/4
01	3 11/4
10	-3 Π/4
11	- Π/4
BBDQPSK	EcoSystem
8DQPSK includes the following features:	
8-state Differential Phase-Shift Keying. Ref	fer to Figure 15 below.
Three bits determine abase shift between	consecutive symptote Defer to Table 12 below

6.38DQPSK

- 8-state Differential Phase-Shift Keying. Refer to Figure 15 below. •
- Three bits determine phase shift between consecutive symbols. Refer to Table 13 below. •

 Table 13 3 bits Determine Phase Shift between Consecutive Symbols

Bit pattern	Phase shift
000	
001	П/4
011	$\Pi/2$
010	3 П/4
110	П
111	-3 TI/4
101	- Π/2
/ 100	- Π/4

7 Re-flow Temperature-time profile

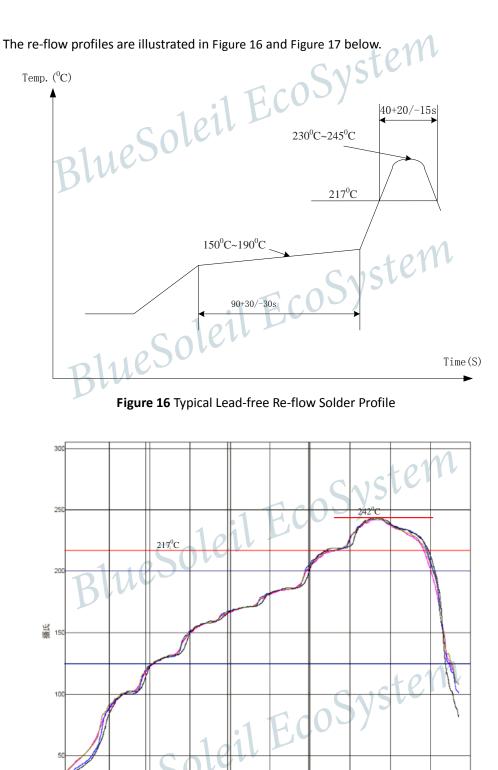


Figure 17 Typical Lead-free Re-flow

The soldering profile depends on various parameters according to the use of different solder and material. The data here is given only for guidance on solder re-flow. i40e-A will withstand up to two re-flows to a maximum temperature of 245°C.

8 Reliability and Environmental Specification

8.1 Temperature test

Put the module in demo board which uses exit power supply, power on the module and connect to mobile. Then put the demo in the -40 $^\circ C$ space for 1 hour and then move to +85 $^\circ C$ space within 1 minute, after 1 hour move back to -40° c space within 1 minute. This is 1 cycle. The cycles are 32 times and the units have to pass the testing.

Solei

8.2 Vibration Test

The module is being tested without package. The displacement requests 1.5mm and sample is vibrated in three directions(X,Y,Z).Vibration frequency set as 0.5G, a sweep rate of 0.1 octave/min from 5Hz to 100Hz last for 90 minutes each direction. Vibration frequency set as 1.5G, a sweep rate of 0.25 octave/min from 100Hz to 500Hz last for 20 minutes each direction.

8.3 Desquamation test 101

Use clamp to fix the module, measure the pull of the component in the module, make sure the module's soldering is good. EcoSystem

8.4 Drop test

Free fall the module (condition built in a wrapper which can defend ESD) from 150cm height to cement ground, each side twice, total twelve times. The appearance will not be damaged and all functions OK.

8.5 Packaging information

After unpacking, the module should be stored in environment as follows: leil EcoSyster

- Temperature: 25 °C ± 2 °C
- Humidity: <60%
- No acidity, sulfur or chlorine environment

The module must be used in four days after unpacking.

9 Layout and Soldering Considerations

9.1Soldering Recommendations

BlueSoleil i40e-A is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and particular type of solder paste used. Consult the datasheet of particular solder paste for profile configurations.

IVT Corporation will give following recommendations for soldering the module to ensure reliable solder joint and operation of the module after soldering. Since the profile used is process and layout dependent, the optimum profile should be studied case by case. Thus following recommendation should be taken as a starting point guide.

9.2Layout Guidelines

It is strongly recommended to use good layout practices to ensure proper operation of the module. Placing copper or any metal near antenna deteriorates its operation by having effect on the matching properties. Metal shield around the antenna will prevent the radiation and thus metal case should not be used with the module. Use grounding vias separated max 3 mm apart at the edge of grounding areas to prevent RF penetrating inside the PCB and causing an unintentional resonator. Use GND vias all around the PCB edges.

The mother board should have no bare conductors or vias in this restricted area, because it is not covered by stop mask print. Also no copper (planes, traces or vias) are allowed in this area, because of mismatching the on-board antenna.

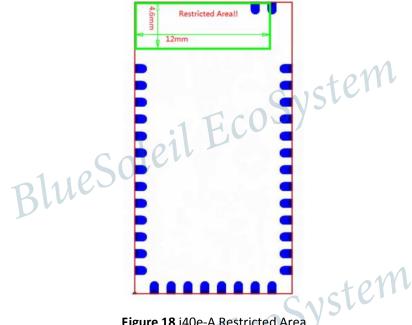
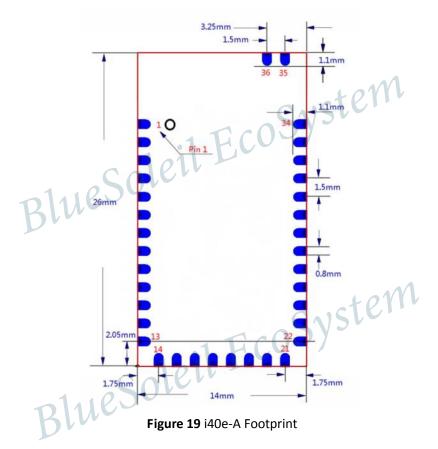


Figure 18 i40e-A Restricted Area


Following recommendations helps to avoid EMC problems arising in the design. Note that each design is unique and the following list do not consider all basic design rules such as avoiding capacitive coupling between signal lines. Following list is aimed to avoid EMC problems caused by RF part of the module. Use good consideration to avoid problems arising from digital signals in the design.

Ensure that signal lines have return paths as short as possible. For example if a signal goes to an inner layer through a via, always use ground vias around it. Locate them tightly and symmetrically around the signal vias. Routing of any sensitive signals should be done in the inner layers of the PCB. Sensitive traces should have a ground area above and under the line. If this is not possible, make sure that the return path is short by other means (for example using a ground line next to the signal line).

Physical Dimensions 10

BlueSoleil EcoSystem BlueSoleil i40e-A's dimension is 26mm(L)x14mm(W).

Package 11

TBD.

eSoleil EcoSystem Certification 12

12.1 Bluetooth

stem BlueSoleil i40e is qualified as a Bluetooth controller subsystem and it fulfills all the mandatory requirements of Bluetooth 2.1 + EDR core specification. If not modified in any way, it is a complete Bluetooth entity, containing software and hardware functionality as well as the whole RF-part including the antenna. This practically translates to that if the module is used without modification of any kind, it does not need any Bluetooth approval work for evaluation on what needs to be tested.

i40e Qualified Design ID (QDID): B019398

12.2 Korea KCC

According to Korean regulations the OEM integrator using a surface mountable module, such as i40e, will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate authorization for the radio. I40e is fully tested to meet the technical requirements of a radio for Korean market. The declaration is as follows:

Certificate No.: KCC-CRM-iVT-I40e

Trade Name or Applicant: IVT Corporation

Equipment Name of the Specified Radio: 특정소출력 무선기기(무선데이터통신시스템용 무선기기)

Equipment certified by Type Trademark: BlueSoleil

Basic Model Number: i40e

Serial Model Number: N/A

Manufacturer/Country of Origin: soleit

12.3 Japan TELEC

According to Japanese regulations the OEM integrator using a surface mountable module, such as i40e, will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate authorization for the radio. BlueSoleil i40e is fully tested to meet the technical requirements of a radio for Japanese market. The declaration is as follows:

IVT Corporation / 중국 System

Certificate No.: 204-240010

PHOENIX TESTLAB GmbH, operating as a Registered Certification Body (RCB ID:204) with respect to Japan, declares that the listed product complies with the Technical Regulations conformity Certification of Specified Radio Equipment (ordinance of MPT NO .37, 1981), Article 2, Paragraph 1, Item 19.

Product description:	Bluetooth 2.1+EDR Module
Trademark/Model Name:	BlueSoleil / i40e
Family name:	BlueSoleil / i40e ESOLeil EcoSystem F1D/G1D
Serial No:	1 sil Ecoe
Software Release No:	Solett
Type of emissions:	F1D/G1D
Frequency and power:	<i>Bluetooth</i> 2.1+EDR:2402~2480MHz;79 ch;0.09 mW/MHz
Manufacturer:	IVT Corporation
Address:	F /F Fa Zhan Duilding No. 12 Shang Di Yin Vi Dad
Address: City:	F /F Fa Zhan Duilding No. 12 Shang Di Yin Vi Dad
	5/F, Fa Zhan Building No. 12 Shang Di Xin Xi Road
City:	5/F, Fa Zhan Building No. 12 Shang Di Xin Xi Road Beijing 100085 China
City: Country:	5/F, Fa Zhan Building No. 12 Shang Di Xin Xi Road Beijing 100085 China

City:

Beijing 100085

Country:

China

12.4 Bluetooth Technology Best Developed Corporation

IVT Corporation is one of Bluetooth technology BEST developed together which is authenticated by The Bluetooth SIG. See Figure 21 below.

Figure 21 IVT is One of Bluetooth Technology BEST Developed Together

Contacts 13

eSoleil EcoSystem Contact: Mr. Zhu Yong Mobile: +86 18910255873 Tel: +86 10 82898219 Fax: +86 10 62963059 Email: embedded@ivtcorporation.com Address: IVT Corporation. 5/F, Fa Zhan Building No.12, Shang Di Xin Xi Road, Beijing, 100085 P.R. China Copyright Soleil EcoSystem Company Site: www.ivtcorporaiton.com Support: support@ivtcorporation.com

14

Copyright ©1999-2014 IVT Corporation All rights reserved.

IVT Corporation assumes no responsibility for any errors which may appear in the specification. Furthermore, IVT Corporation reserves the right to alter the hardware, software, and/or specification detailed here at any time without notice and does not make any commitment to update the information contained here.

BlueSoleil is a registered trademark of IVT Corporation for *Bluetooth* production. The *Bluetooth* trademark is owned by The Bluetooth SIG Inc., USA and is licensed to IVT Corporation. All other trademarks listed herein are owned by their respective owners.

BlueSoleil EcoSystem

BlueSoleil EcoSystem

BlueSoleil EcoSystem